

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2009

MATHEMATICS: PAPER III

EXAMINATION NUMBER						
Time: 2 hours					100 ı	marks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 15 pages, and a 4-page Diagram and Information Sheet (Pages i iv). Detach the Diagram and Information Sheet from the centre of the question paper for your own use. Please check that your paper is complete.
- 2. Read the questions carefully.
- 3. Answer ALL the questions on the question paper and hand this in at the end of the examination. You do not need to hand in the Diagram and Information Sheet.
- 4. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
- 5. Round off your answers to two decimal digits where necessary.
- 6. It is in your own interest to write legibly and to present your work neatly.

IEB Copyright © 2009 PLEASE TURN OVER

SECTION A

QUESTION 1

The recursive formula $T = aT + bT + bT = aT$		2; 5; 12; 29;	is defined by
$T_k = a.T_{k-1} + b.T_{k-2}$; $k \ge 3$ Show all working to find			
Show all working to find	the values of a and b .		

All answers containing factorials must be calculated, e.g. 5! = 120.

Find	the probability that the cards are all the same colour.
. 1110	are producting that the cards are an the same colour.
If P	$(A) = \frac{3}{2}$ and $P(B) = \frac{1}{2}$,
	$(A) = \frac{3}{8} \text{ and } P(B) = \frac{1}{4},$
	$(A) = \frac{3}{8}$ and $P(B) = \frac{1}{4}$,
find:	
find:	$P(A \cup B)$ if A and B are mutually exclusive events.
If <i>P</i> find:	
find:	
find:	
find:	
find: (1)	
find: (1)	$P(A \cup B)$ if A and B are mutually exclusive events.
find:	$P(A \cup B)$ if A and B are mutually exclusive events.
find: (1)	$P(A \cup B)$ if A and B are mutually exclusive events.
find: (1)	$P(A \cup B)$ if A and B are mutually exclusive events.
find: (1)	$P(A \cup B)$ if A and B are mutually exclusive events.
find: (1)	$P(A \cup B)$ if A and B are mutually exclusive events.
find: (1)	$P(A \cup B)$ if A and B are mutually exclusive events.

(c)

How many differen	nt arrangements are possible?
Find the probabili other.	ty that Mr and Mrs Keseke land up sitting next to each

A research firm wants to determine the maximum distance at which each of 12 drivers can read a newly designed road sign. They hope to improve road safety by examining the relationship between age (x) and sign legibility distance (y). The table below lists the data.

x (Age)	18	24	28	29	32	35	49	55	63	74	79	82
y (Distance in metres)	155	149	155	140	128	137	116	128	106	109	94	92

	your model found in (a) to calculate the your answer to the nearest metre.	ne legibility distance for a 33 year old
	culate the correlation coefficient r for the	a data
Jaic	unate the correlation coefficient F for the	e data.
valu	referring to your answer in (c) above, see of r from one of the options given be reflection.	•
valu	the of r from one of the options given by	•
valu you	the of r from one of the options given by r selection.	•
yalu you 1	the of r from one of the options given by r selection. A strong positive linear relationship	•
valu your 1 2	te of r from one of the options given by r selection. A strong positive linear relationship No linear relationship	
your 1 2 3	A strong positive linear relationship No linear relationship A weak negative relationship	•

A grouped distribution of the running time in minutes for 96 DVDs is shown in the table below.

Playing time x (min)	Frequency
40 – 44	2
45 – 49	8
50 – 54	14
55 – 59	27
60 – 64	21
65 – 69	13
70 – 74	6
75 – 79	3
80 – 84	2

Estimate th	ne standard deviation of the data	given in the table, correct to	1 decimal

(c) An ogive curve of the data is drawn below.

Answer the following by referring to the table and/or the ogive:

	your answer to	using any othe	er evidence),
comment on the	e spread of the da		
comment on the	e spread of the da	 	

Match each Box-and-whisker plot (a), (b) or (c) with one of the Histograms A, B or C below.

(a)

A

(b)

В

(c)

C

- (a) _____
- (b) _____
- (c) _____

3 marks

QUESTION 6

For each of the following, explain why the statement could be misleading:

people with sn	level of people w mall feet. It was fo atly greater. We ca	und that the nu	meracy level	of people wit	th big feet

IEB Copyright © 2009 PLEASE TURN OVER

SECTION B

QUESTION 7

NO REASONS ARE NEEDED IN THIS QUESTION

Refer to the diagram.

In $\triangle ABC$, P is the midpoint of side AC.

RS is parallel to BP and $\frac{AR}{AB} = \frac{5}{7}$.

CR and BP intersect at T.

Determine:

(a)	AS
(a)	SC

_____(3)

(b) RT if RC = 20 cm.

______(3)

Refer to the diagram. O is the centre of the circle. PR is parallel to QB. QOB is a diameter.

 $\hat{B} = 20^{\circ}$.

asons, the size of \hat{S}_2 .	

REASONS MUST BE GIVEN IN THIS QUESTION

Refer to the diagram.

RT is a tangent to the circle at T.

Lines NM and NT are produced to R and S respectively, so that RS = RT.

S and M are joined.

Let $\hat{T}_4 = x$

(a)	Giva 3	Other	angles	that	ara a	anal:	to	v
(a)	Give :	ouner	angles	ınaı a	are e	uuai	LO -	х.

_____ (6)

Prove that

(b)
$$R\hat{S}T = \hat{M}_3$$

______(1)

(c) RSTM is a cyclic quadrilateral.

(2)

(4)

QUESTION 10

REASONS MUST BE GIVEN IN THIS QUESTION

Refer to the diagram.

Two circles intersect at A and B.

Chords AS and BS of the larger circle meet the smaller circle at D and C respectively. CD produced meets the larger circle at T. AT and TS are joined.

Prove that:

IEB Copyright © 2009 PLEASE TURN OVER

$TS^2 = BS \cdot CS$			

Refer to the diagram.

 $\triangle ABC$ is right angled at \hat{C} .

The perpendicular bisector DE of side AB meets BC at E.

If AC = 4.8 cm and AB = 8 cm

name a triangle	which is similar to ΔBED .	
calculate the ar	ea of <i>ADEC</i>	
calculate the al		